prevost

PREVOST PIPING SYSTEM

What is a **compressed air system?**

A compressed air system moves energy throughout a network to power workstations and machinery.

Mount the ringmain of a Prevost 100% aluminium pipe system a minimum height of 2.5 m from the floor.

Install smaller diameter «downpipes» or «drops» off the main line to terminate at distribution points throughout the network approximately 1.2 m from the floor. From these points various accessories can be attached (manifolds, safety couplings, filtration, hoses, etc.).

SIZING A COMPRESSED AIR SYSTEM

When designing a system, consider the following:

- desired flow rate
- the length of the main line.

Use the table to determine the appropriate pipe diameter with an operating pressure of **8 bar** and a maximum pressure drop is 5%.

SIZE AN OPEN SYSTEM

Pressure: 8 bar | Max. pressure drop 5% (0.4 bar) | Max. speed: 10 m/s

	Compressor*					Length of the main line								
Po	Power Flow rate			50 m	100 m	150 m	300 m	500 m	750 m	1000 m	1300 m	1600 m		
kW	HP	Nm3/h	NI/min	Scfm	164 ft	328 ft	492 ft	984 ft	1640 ft	2460 ft	3280 ft	4265 ft	5249 ft	
2.2	3	22	367	13	16	16	20	20	25	25	25	25	32	
3	4	30	500	18	16	20	20	25	25	25	32	32	32	
4	5.5	40	667	24	20	20	25	25	32	32	32	32	32	
5.5	7.5	50	834	29	20	25	25	25	32	32	32	40	40	
7.5	10	70	1 167	41	20	25	25	32	32	40	40	40	40	
11	15	100	1 667	59	25	32	32	32	40	40	40	50	50	
15	20	150	2500	88	32	32	32	40	50	50	50	50	63	
18	25	180	3 000	106	32	32	40	40	50	50	50	63	63	
22	30	220	3 667	129	40	40	40	50	50	50	63	63	63	
26	35	260	4334	153	40	40	40	50	50	63	63	63	63	
30	40	300	5 000	176	40	40	50	50	63	63	63	63	80	
37	50	370	6167	218	50	50	50	50	63	63	63	80	80	
45	60	450	7 500	265	50	50	50	63	63	80	80	80	80	
55	75	550	9167	324	63	63	63	63	80	80	80	80	100	
75	100	750	12500	441	63	63	63	80	80	80	100	100	100	
90	120	900	15 000	529	80	80	80	80	80	100	100	100	100	
110	150	1 100	18334	647	80	80	80	80	100	100	100	100		
130	175	1 300	21 667	765	80	80	80	80	100	100	100			
160	215	1 600	26 667	941	100	100	100	100	100					
200	270	2 000	33334	1 176	100	100	100	100						

 $^{^{\}star}$ These values may vary slightly from compressor data

As temperatures fluctuate up or down, aluminium naturally expands and contracts. To compensate, we recommend installing equipment along the line to absorb the movement.

- Use a flexible hose for small diameters
- Install expansion kits to accommodate large diameters.

An expansion hose is necessary when a straight line exceeds 50 meters or more. Use this flexible hose to easily change direction of the air flow (angles) or avoid obstacles in the facility (pillars, beams, etc.).

SIZE A CLOSED SYSTEM

Pressure: 8 bar | Max. pressure drop 5% (0.4 bar) | Max. speed: 10 m/s

Compressor*					Length of the main line									
Power Flow rate			50 m	100 m	150 m	300 m	500 m	750 m	1000 m	1300 m	1600 m			
kW	HP	Nm3/h	NI/min	Scfm	164 ft	328 ft	492 ft	984 ft	1640 ft	2460 ft	3280 ft	4265 ft	5249 ft	
2.2	3	22	367	13	16	16	16	16	20	20	20	20	25	
3	4	30	500	18	16	16	16	20	20	20	25	25	25	
4	5.5	40	667	24	16	16	20	20	25	25	25	25	32	
5.5	7.5	50	834	29	16	20	20	20	25	25	25	32	32	
7.5	10	70	1 167	41	20	20	20	25	25	32	32	32	32	
11	15	100	1 667	59	20	25	25	25	32	32	32	40	40	
15	20	150	2500	88	25	25	32	32	32	40	40	40	40	
18	25	180	3 000	106	25	25	32	32	40	40	40	50	50	
22	30	220	3 6 6 7	129	25	32	32	40	40	40	50	50	50	
26	35	260	4334	153	32	32	32	40	40	50	50	50	50	
30	40	300	5 000	176	32	32	40	40	50	50	50	50	63	
37	50	370	6167	218	32	32	40	40	50	50	50	63	63	
45	60	450	7500	265	40	40	40	50	50	63	63	63	63	
55	75	550	9167	324	40	40	50	50	63	63	63	63	80	
75	100	750	12500	441	50	50	50	63	63	63	80	80	80	
90	120	900	15 000	529	50	50	50	63	63	80	80	80	80	
110	150	1 100	18334	647	63	63	63	63	80	80	80	80	100	
130	175	1 300	21 667	765	63	63	63	63	80	80	80	100	100	
160	215	1 600	26 667	941	63	63	63	80	80	80	100	100	100	
200	270	2 000	33 334	1 176	80	80	80	80	80	100	100	100	100	
250	340	2 500	41 667	1 471	80	80	80	80	100	100	100			
300	405	3 000	50 000	1 765	100	100	100	100	100	100				
350	475	3500	58334	2 059	100	100	100	100	100					
400	540	4 000	66 667	2 353	100	100	100	100						

 $^{^{\}star}$ These values may vary slightly from compressor data

EXPANSION COEFFICIENT: 0.024 mm per METRE and per DEGREE °C.

EXPANSION IS CALCULATED AS FOLLOWS:

C = COEFFICIENT OF EXPANSION (0.024 mm)

L = STRAIGHT LINE LENGTH (m)

 $\Delta T^{\circ} = \text{difference}$ between maximum and minimum room temperature in °C.

DL = OVERALL EXPANSION (mm)

IN OTHER WORDS: $\mathbf{DL} = \mathbf{C} \times \mathbf{L} \times \Delta \mathbf{T}^{\circ}$

EXAMPLE:

A 20 meter line laid with ø40 mm piping, at an ambient temperature of 15°C, can be subjected to a maximum temperature of 40°C

→, i.e. a difference of 25°C.

DL: 0.024 (mm) x 20 (m) **x 25** (40°C – 15°C) **= 12 mm**

PREVOST PIPING SYSTEM

The 100% aluminium concept

The PREVOST PIPING SYSTEM's pipes and fittings are 100% aluminium, compact, lightweight and professional strength.

They can be installed easily and quickly for immediate pressurisation.

The **PREVOST PIPING SYSTEM** range ensures:

- clean, high quality air at all times
- a sealed system
- an optimised flow rate

and corrosion.

100% CUSTOMIZABLE

The wide range of sizes and

fittings allow the system for

modular and scalable construction.

- an operating pressure range: from 0.98 bar to + 16 bar
- a temperature range: from 20°C to + 80°C

Workstations are well supplied, accessible and ergonomically designed. The facility is durable and can be easily upgraded.

EASY AND QUICK TO ASSEMBLE

Simply insert the pipe into the **PPS** fitting then **tighten the nut.**

LEAK FREE WITH MINMAL PRESSURE LOSS

The "PPS Grip Concept", creates a secure, leak free connection. The smooth internal surface generates a laminar flow, a low friction coefficient and a maximum flow diameter which are all factors to reduce pressure loss.

COMPATIBLE WITH COMPRESSOR OILS

Aluminium and viton seals are compatible with compressor lubricants.

H TOUGH MATERIAL

Aluminium guarantees long term performance:

- mechanical strength
- pressure resistance
- shocks absorbent

THE BENEFITS OF ALUMINIUM COMPARED TO OTHER MATERIALS

The **PREVOST PIPING SYSTEM** range

CERTIFICATIONS BY INDUSTRY **APPLICATION**

Industry standards

Pressurised equipment

Safety and protection

Fluid properties

Environmental

PREVOST PIPING SYSTEM

100% ALUMINIUM PIPES

- **STAINLESS STEEL**
- MINIMAL PRESSURE LOSS

 laminar flow from smooth internal surface
- UV AND HEAT RESISTANT low coefficient of expansion
- ISO MARKING AND COLOUR all diameters are available for RAL 5012 (blue) and RAL 7001 (grey) pipes. 20 and 25 mm diameters are also available for RAL 6029 (green).
- NO FIRE HAZARD system does not require a fire permit
- SIMPLE TOOLS easy to cut and chamfer for simplified installation and maintenance
- **LIGHTWEIGHT**
- **COST-EFFECTIVE**

TECHNICAL CHARACTERISTICS OF PPS PIPE

Material:

Extruded aluminium.
Alloy EN AW 6060 T6 UNI-EN 573-3

Treatment:

Internal/external treatment (RoHS compliant)

Coating:

Electrostatic paint

Extrusion quality:

Calibrated without welding

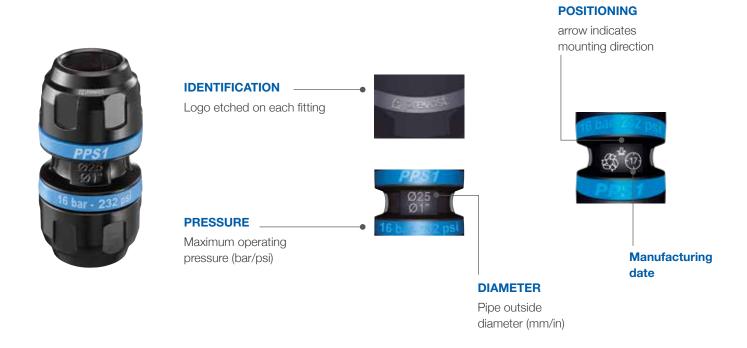
Compatible fluids:

Compressed air, vacuum, neutral gases

Pipe lengths:

4 or 5.5 metres

Density: 2.7 kg/dm³


Pipe outside diameter:

Ø 16, 20, 25, 32, 40, 50, 63, 80, 100 mm.

PREVOST PIPING SYSTEM 100% aluminium fittings

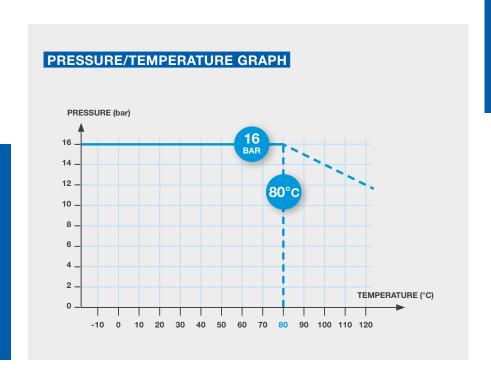
Prevost designs and manufactures compact, high-performance fittings.

THE **PPS** GRIP CONCEPT

The **PPS** Grip Concept is based on two factors.

The pipe is locked into the fitting with a stainless steel ring of teeth which penetrates the aluminium.

The double-lobed, lubricated seal guarantees a secure connection and provides optimum results even in the harshest working conditions.



TECHNICAL SPECIFICATIONS OF FITTINGS

Body and nut:
100% aluminium EN AB 46100

PPS Grip Concept:
stainless ring

Tapping flange
to remove condensates

Available diameters

AVAILABLE FITTING OPTIONS

STRAIGHT FITTINGS

Ø 16 to 80 mm

Simple union

Reducer

Pipe cap

Straight male threaded fitting

Straight female threaded fitting

Expansion kit

Sliding union

Ø 100 mm

Simple union

Reducer

Pipe cap

Straight female threaded fitting

Sliding union

BENT FITTINGS

Ø 16 to 80 mm

90° elbow

90° elbow threaded male

45° elbow

Ø 100 mm

90° elbow

T-PIECE FITTINGS

Ø 16 to 80 mm

Equal T-piece

Reduced T-piece

Female threaded T-piece

Ø 100 mm

Equal T-piece

Female threaded T-piece

CROSS FITTINGS

Ø 16 to 32 mm

Cross connector

Cross connector

TAPPING FLANGE

A tapping flange connects a down pipe (drop) to workstations. It's purpose is to replace a traditional "gooseneck" configuration and reduce condensates in the line.

Flanges transport clean air from the side of the pipe to workstations. Any remaining condensates which remain at the bottom of the pipe are then evacuated via drains located throughout the system.

Tapping flanges can quickly integrate into existing systems, no disassembly required.

The flange is **compact** and equipped with an anti-rotation system which securely locks the fitting in place.

TAPPING FLANGES BENT

Ø 25 to 80 mm

Ø 100 mm

TAPPING FLANGES FEMALE THREADED BENT STRAIGHT

Ø 25 to 80 mm

Ø 25 to 100 mm

TAPPING FLANGES FOR DRILLING UNDER PRESSURE

Ø 25 to 100 mm

VALVES

Ø 16 to 50 mm

Ø 63 mm

Pipe/pipe Aluminium body

Ø 63 to 100 mm

Female threaded/pipe

Compact Connection Concept - CC concept

The CC Concept is the solution for

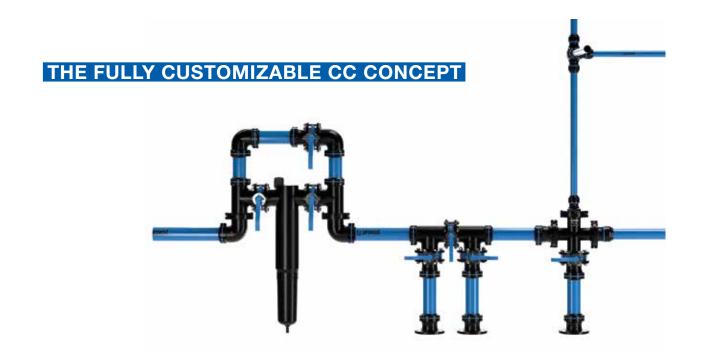
- Directly connect two fittings
- Optimise space
- Specifically designed for «compressor rooms»

STRAIGHTFORWARD, FAST CONNECTION METHODS

CHARACTERISTICS AND BENEFITS

1 CONNECTION WITH A FLANGE

- ANSI/ASME general-purpose flange
- Ideal for connecting a system to a compressor, a dryer or to an existing system through the standard ANSI flange


2 CONNECTION WITH A CLAMP

- Quickly connect two fittings with a clamp instead of cutting the pipe or installing a flange
- Design allows for easy installation and elimination of assembly errors

3 CONNECTION VALVE

COMPACT CONNECTION FITTINGS - CC CONCEPT

UNIONS

Connector union with 2 different diameters

Connector union

ELBOWS

Equal 90° elbow connector

45° elbow

T-PIECES

1-connector T-piece with 2 different diameters

2-connector T-piece

3-connector T-piece

4-connector cross-piece

CONNECTING PARTS

Clamp

Flange

ALUMINIUM VALVES

Ø 63 mm

1-connector valve

2-connector valve

ACCESSORIES

Female threaded body

Plug

O-ring seal

Male threaded body

Valve

Bolts/nuts

Safety and energy savings

REMOTE CONTROLLED PNEUMATIC SAFETY VALVE

- Compact and lightweight
- Easy to operate even at ceiling height
- Quick to install
- 100% aluminium
- Fully pneumatic
- Available in Ø 40-50-63-80-100 mm.

VALVES ø40 to 80 mm

CC CONCEPT ø100 mm

Every compressed air installation, replacement, repair or retrofit should include at least one shut off valve.

This shut off valve can quickly depressurise certain areas of the system in the event of emergency or if maintenance is necessary.

By isolating only targeted areas of the system, productivity will not be lost.

Push button

n

VALVE REMOTE CONTROL

Several options to control the valve are available:

- PUSH BUTTON
 - Immediately stops air flow with a push of a button
- KEY SWITCH
 - Provides limited access to the valve control
- PROGRAMMABLE CONTROL MODULE

A programmable control module turns the system on and off at designated days or times. Automatically shutting off a system during down time will reduce energy waste and drops in pressure when the system is not in use.

Programmable control module

Guidelines for installing a compressed air system

Ideally, the compressor **room** should be:

- spacious
- ventilated & insulated
- separate from the rest of the workshop

Connect the air compressor to the *PPS* system with a **hose** to eliminate vibrations and allow for maintenance (ref. LEF and LEM).

Install bypasses:

- between each machine
- between tanks
- between filters

Preferably, the **main** line should form a **loop**. For safety reasons, install the primary air lines at a height of **2.50 m** from the ground.

The diameter of the main line should be **large enough** to avoid drops in **pressure** and **to accommodate future expansion**.

The main line:

- should be installed with a 1% slope to gravity feed condensates to low points that terminate in drains.
- should be securely mounted with a sufficient number of sliding clamps that will allow the pipe to expand and contract as the temperature fluctuates (ref. PPS CI).

Remove residual condensates from the main line **with down pipes** (drops) that terminate in an automatic drain system.

OFFSET FROM THE WALL

DIRECTLY TO THE WALL

SUSPENDED

SUSPENDED BY A CABLE

FASTENED TO IPN/HEA BEAM WITH PLATES

MOUNTING THE SYSTEM

The mounting style is dictated by the layout of the facility.

Chose the method that is most structurally sound and aligned with the environment.

Always abide by the recommended pipe support distances between each clamp: the maximum spacing is 3 meters.

PPS SYSTEM **INSTALLATION EQUIPMENT**

TIGHTENING WRENCHES

SINGLE-TOOTH ADJUSTABLE WRENCH

TORQUE WRENCH

HEXAGON SOCKET

PRESSURE DRILLING TOOL

HOLE SAW FOR PIPE DRILLING

HAND TOOLS FOR CHAMFERING AND DEBURRING

CHAMFERING TOOLS FOR DRILLS

INSERTION GUIDE FOR PPS FITTINGS

ASSEMBLY GEL

PIPE CUTTER

Ø 16-32 Ø40-100

MOUNTING CLAMPS

SHIMS FOR MOUNTING CLAMPS

Ø63-80

MOUNTING BRACKETS FOR VALVES

PIPE INSTALLATION TOOL KIT

TIGHTENING WRENCH KITS

CHAMFERING TOOL KITS

DRILLING TOOL KITS

INSTALLING A COMPRESSED AIR SYSTEM

1 CUT

The pipe should be cut perpendicular to the pipe axis. [ref. PPS CTU]

2 CHAMFER

Chamfer the pipe on the outside to facilitate insertion and avoid damaging the seal. Internal deburring will remove any cutting residue.

[ref. PPS CH]

MARK

Make a mark on the pipe to check its position in the fitting before tightening (use the mark on the fitting or on the tightening wrench).

4 LUBRICATE

Assembly gel is recommended to facilitate inserting the pipe into the fitting.

[ref. PPS AL]

5 ASSEMBLE

Slightly unscrew the nut, then push the pipe rotating it slightly to achieve the recommended insertion length.

6 TIGHTEN

Tighten the nut by hand and then tighten it as recommended.

[ref. PPS CLE]

Supplemental equipment

A COMPLETE, UNIFIED SYSTEM

Prevost offers a full line of pneumatic tools and accessories to accommodate every compressed air system.

■ SAFETY WALL MANIFOLDS

Installed at the bottom of a downpipe (drop) to quickly connect your equipment.

Air inlet: G 1/2 or G 3/4

Multiple connection profiles available

Material: aluminium alloy

Robust 4-point wall attachment


Fitted with a manual drain

Air outlet: 1/2/4/6/8/10 single push safety couplings

Outlets equipped with anti-hose whip safety couplings which comply with ISO 4414 standard for user protection

Coupling body swivels to ergonomically position the button

Quick, reliable connection and disconnection

■ HOSE REELS

The automatic hose reel

is an essential piece of equipment for an organized workshop.

The retractable hoses will save time, increase efficiency and enhance safety.

All automatic hose reels comply with the Machine Directive 2006/42/EC.

The following standards also apply:

- EN ISO 12100: 2010-11-01
 "Safety of machinery General principles for design Risk assessment and risk
 reduction"
- EN 13857: 2008 "Safety of machinery: safety distance to prevent upper and lower limbs from reaching hazardous areas"

■ AIR TREATMENT UNITS

Protect pneumatic tools and equipment by purifying the compressed air.

Three treatment levels are recommended:

• Cyclonic separator:

removes the largest solid and water particulates from the system [ref. SPC]

• 25 µm standard filtration :

eliminates contaminants present (particulates, water, etc.) in an air system. Units are equipped with a drain to remove pollutants [ref. ALTO]

• Submicron filtration (optimum quality): removes the smallest residual contaminants (solid, liquid and oil aerosols) from compressed air with 99.99% efficiency rates. Provides the highest level of air quality [ref. MICRO AIR]

■ BENT LIMBS

Use a bent pipe to compensate for equipment that does not properly align or to overcome obstacles.

■ MOUNT ACCESSORIES ON IPN/HEA BEAMS WITH PLATES

Create **ergonomic, secure** workstations.

The metal plates are designed to attach equipment on **IPN/HEA** beams:

- In complete safety
- Without drilling
- Seamless
- Conforms with the current industry requirements.